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Abstract — High data rate transmission over multipath
channels requires equalizers of long impulse response.
In such cases, frequency domain implementation of the
block least mean square (BLMS) algorithm offers low
complexity growth relative to time domain techniques.
The work presented herein is devoted to a study of the
fast BLMS (FBLMS) algorithm implemented in the fre-
quency domain using overlap-save sectioning and the
fast Fourier transform (FFT). We examine the bit error
rate (BER) performance for high data rate quadrature
phase shift keying (QPSK) transmission over a multi-
path channel as well as the computational complexity of
the FBLMS equalizer in comparison to the time domain
implementation. Finally, we show how normalizing the
step size of the FBLMS algorithm according to the power
distribution of the input process results in a significant
improvement in the equalizer convergence relative to the
time domain methods.

I. INTRODUCTION

For time division multiple access (TDMA), the fundamen-
tal challenge in wireless transmission is overcoming inter-
symbol interference (ISI) caused by multipath propagation.
The conventional method of mitigating ISI has been time do-
main equalization. However, as the signaling rate increases,
the number of dispersed symbols grows linearly with it. As
a result, the number of equalizer coefficients, N, needed to
compensate for the IST increases accordingly. Channels of
interest in this paper include those for high data rate appli-
cations, where the intersymbol interference length is large.
Since time domain algorithms have a computational com-
plexity on the order of N2, per block of N data symbols,
such implementations may not be suitable for these appli-
cations even with today’s state of digital signal processing
technology.

Frequency domain equalization is a technique that offers
low complexity growth with an increase of equalizer length in
comparison to the time domain approach [1]. By efficiently
implementing block data processing using overlap-save sec-
tioning and the fast Fourier transform (FFT), the complex-
ity can be reduced to the order of NlogN per block of N data
symbols. For a large number of equalizer taps, this trans-
lates to substantial computational savings. We present an
analysis of the frequency domain fast block LMS (FBLMS)
and normalized FBLMS (NFBLMS) algorithms as applied
to static multipath channels with long delay spreads. Per-
formance measures such as the bit error rate, computational

complexity and the rate of convergence are examined and
compared to the conventional time domain equalization ap-
proach.

II. FasT BLocKk LMS ALGORITHM

A Block LMS Algorithm

The FBLMS algorithm is an efficient frequency domain
implementation of the Block LMS (BLMS) algorithm. The
BLMS algorithm is a generalized form of the LMS algorithm,
in which the gradient is estimated over a block of L input
samples. The resulting update equation for the equalizer tap
column vector w(n) is given by [2]

L-1
w(n + L) = w(n) + 2u Z x(n+i)e*(n+1i), (1)

where p is the adaptation step size and x(n) is the column
vector of the equalizer input. The error, e(n), is the differ-
ence between the desired response, d(n), and the equalizer
output, y(n), that is

e(n+i)=dn+1i)—y(n+i) i=0,...,L—1. (2)
In the block implementation of the LMS algorithm, the
equalizer taps are held constant for the duration of the data
block, hence the equalizer output can be expressed as

y(n+14) = w(n)x(n +19) i=0,...,L—1, (3)

where the superscript H denotes a Hermitian transpose. The
computation of the equalizer output in Equation (3) and
the estimation of the gradient in Equation (1) are the op-
erations of linear convolution and linear correlation, respec-
tively. The basis of the frequency domain BLMS algorithm
is an efficient implementation of these operations via the fast
Fourier transform (FFT) [3].

The main challenge in implementing these operations in
the frequency domain is that FFT operation leads to circu-
lar convolution/correlation [4]. In order to implement the
FBLMS algorithm properly, proper data sectioning must be
carried out to eliminate the wrap around effects of circular
convolution/correlation. The most common data sectioning
methods used are overlap-save and overlap-add. We describe

the former, as it leads to a more efficient implementation of
the FBLMS algorithm [3].
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Fig. 1. The FBLMS Algorithm

B Overlap-Save Data Sectioning

In order to eliminate the aliasing effects of circular con-
volution, the lengths of the FFT’s used must be sufficient.
Specifically, to convolve a block of N symbols with a filter
of length N, it is necessary to use FFT’s of length 2V [4].
Overlap-save is a method of computing linear convolution of
a long data sequence with filter taps by sectioning the input
data stream into blocks, and obtaining the output blocks
using the FFT. The input samples are broken down into
blocks of length 2NV with adjacent blocks overlapping by N
samples. The filter tap vector is also extended by padding
it with N zeros. The 2N-point FFT’s are computed and
the output block is obtained from the inverse FFT of their
product. Since the first N output symbols are the result of
aliasing, only the last IV samples constitute valid filter out-
put. The above process is repeated for all data blocks, with
the individual output blocks appended together to give the
overall output sequence.

C FBLMS Algorithm

The FBLMS algorithm implemented using overlap save is
shown in Figure 1. The input data stream is broken down
into blocks of 2V, consisting of IV samples from the previous
block followed by N new ones. The FFT of the resulting
samples can be expressed as a diagonal matrix

Xr(k) = diag{F{x(kN — N),..,z(kN + N - 1)}}, (4)

where k is the block index and F refers to the Fourier trans-
form operation. The FFT of the equalizer taps is a column
vector of length 2V, as the tap values are augmented at the
end with N zeros, that is
wr(k) = [F{wo(n), ... N, 4)

7wN71(n)707

where the superscript T' denotes a transpose. The Fourier
transform of the output vector is the element-by-element
product of the transformed sequences, given by

yr(k) = Xr(k)wr(k). (6)

As discussed previously, the first N samples of the product
are invalid as they are the result of circular convolution. The
vector yx(k) must be transformed into the time domain,
where the invalid samples are discarded and only the last V
are used to compute the error
e(kN +m) = d(kN +m) —y(kN +m) m=0,...,N—1.
(7)
The above constraint can be formulated using the following
matrix notation. By defining a sectioning constraint matrix
for the error block as

K= [0~ In], (8)

where Oy is a NV X N zero matrix, I is an N x N identity
matrix, the time domain output vector can be expressed as

y(n) = KF "Xz (k)wr(k), 9)

where F is a 2N x 2N DFT matrix with elements F;; =
e~12mii/2N  The resulting error samples are augmented with
N zeros,

ex(k) = [F{0,...,0,e(kN), ....e(kN + N — 1)}]T,  (10)

since linear correlation has to be computed between the er-
ror vector and the complex conjugate of the input vector
XM (k). Using the constraint matrix, the vector ex(k) can
be rewritten as

er(k) = FKTe(k). (11)

The next section of the algorithm is the gradient con-
straint. Since there are only N tap weights being updated
in the time domain, it is necessary to ensure that the gradi-
ent contains only N non-zero elements. Thus, the gradient
is transformed into the time domain and the last N elements
are replaced with zeros before transforming it back to fre-
quency domain and updating the tap values. The gradient
constraint can be expressed by using a constraint matrix
similar to that used for the error block. By defining P as

| In On

the augmented gradient can be expressed as
[3(k),0,...,01" = PF'XE(ker(k),  (13)

where VJ (k) refers to the estimated gradient. The tap up-
date therefore becomes

wr(k+1) =wr(k) + 2uFPF ' XX (k)er(k).  (14)



D Normalized FBLMS

The convergence properties of the FBLMS algorithm can
be greatly improved by normalizing the step size inversely
proportional to the power content of each frequency bin [2].
This is equivalent to replacing the step size p with uD™!,
where D is the diagonal matrix with the detected variance
of the input process, agﬂ (n), as its entries. In practice, the

matrix D is replaced by D, with estimates 62 (n) on its

main diagonal. Each entry in D is computed by a recursion
formula [2]
G2y, (n) =707, (n=1)+(1=7)o;

TF,i TF, TF,i

(n),i=0,...,N—1,
(15)
where v is often referred to as the smoothing factor. The
resulting algorithm, referred to as the normalized FBLMS
(NFBLMS), has the tap update equation given by

wr(k+1) = wr(k) + 2uD P FPF XX (k)er (k). (16)

III. SIMULATION METHODOLOGY

The communication system model, depicted in Figure 2,
consisted of a cascade of a data source, transmit filter, chan-
nel, receive filter, equalizer, a decision device and a data sink.
The pulse shaping was performed by a square root raised co-
sine transmit filter with a roll-off of 35%. Since the channel
characteristics were assumed to be unknown, we employed
a suboptimum receive filter, that is one matched only to the
transmit filter and not the combination of the transmitter
and the channel. Finally, a T-spaced linear equalizer was
used following the receiver.

The simulation results presented here were conducted on
a multipath channel ! with a maximum delay spread of 8us
[5]. Tts impulse response was obtained by sampling the delay
profile at 8 times the symbol rate and varying the phase for
each symbol according to a uniform distribution from 0 to
27. Defining the bandwidth at the frequency of a 5 dB am-
plitude drop, the channel has a bandwidth between 150 kHz
and 250 kHz, depending on the phase characteristics. The
input signal-to-interference ratio (STR;ppyt) of the channel,
expressed as

fofo

S fifr
i#0

STRinput = (17)

where f; denotes the impulse response of the overall (un-
equalized) channel, varies between 5 dB and -2 dB between
data rates of 1.0 Mbps to 4.0 Mbps.

IV. BIT ERROR RATE PERFORMANCE

The first performance criterion examined is the bit error
rate (BER). In [6], Beaulieu developed an efficient analytical
method for calculating the bit error rate over channels with
both cross-talk and ISI and corrupted by additive Gaussian

LOther channels considered can be found in [5].
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Fig. 2. Communication System Model
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Fig. 3. Bit Error Rate Performance

noise. This method, which is based on the Fourier series ex-
pansion of the noise cumulative distribution function (cdf),
was used throughout this paper.

We examine the BER performance as a function of the
signal-to-noise ratio Ejy /Ny, where Ny is the noise variance
and Ej is the energy per data bit. Figure 3 shows the results
for QPSK signaling at data rates from 1.0 Mbps to 4.0 Mbps.
The matched filter bound - the performance achievable as-
suming transmission of isolated symbols, is also included as a
reference point. The equalizers used consisted of 32 symbol-
spaced taps for signaling rates up to 2.0 Mbps and 64 taps
for transmission rates of over 2.0 Mbps. Since, providing a
gradient constraint is used, the frequency domain algorithm
yields equalizer taps identical to those obtained by the time
domain methods, their bit error rate performance is identi-
cal.

From Figure 3 we see that an SNR, of approximately 11.5
dB is required to achieve BER of 10~ for 1.0 Mbps trans-
mission. In order to maintain a steady BER, the signal
power must be increased by approximately 4 dB for each
1.0 Mbps increase in transmission rate between 1.0 and 3.0
Mbps. The performance drop between 3.0 and 4.0 Mbps is
approximately 1.5 dB.

V. COMPUTATIONAL COMPLEXITY

Next, we compare the computational complexity for the
time and frequency domain algorithms. For QPSK signal-
ing, the total number of real multiplications used by the



LMS, FBLMS and NFBLMS algorithms for a block of N
symbols are SN2, 20Nlog2N + 16N and 20Nlog2N + 20N
respectively [5]. The results are tabulated in Table 1, which
lists the number of real multiplications needed for a block
of N symbols for N equal to 32 and 64. In the calculations
we have assumed QPSK transmission and complex equalizer
taps.

Table 1: Equalizer Complexity Comparison

N=32| N=64

LMS 8192 32768
FBLMS 4352 9984
NFBLMS 4480 10240

We see that both the normalized and non-normalized fre-
quency domain block LMS algorithms offer significant sav-
ings in computational complexity over the LMS counterpart.
Gains of 50 % and 65% are obtained for block lengths of 32
and 64. As stated in [1], current DSP’s are capable of per-
forming up to 1.6 x 10? real operations per second. Assuming
a transmission rate of 2 x 10® complex symbols per second,
the DSP will be capable of performing approximately 800
real operations per complex symbol. Taking into account
that the values given in Table 1 are for blocks of up to 64
complex symbols, 51200 real operations per block can be
provided by the DSP. Since, at most 10240 operations are
needed, modern DSP’s should be well suitable for frequency
domain equalization applications.

VI. CONVERGENCE PROPERTIES

Finally, we analyze the convergence rate of the algorithms.
We present results for 4 Mbps QPSK transmission over the
channel previously described with an equalizer of length 64.
Figure 4 shows plots of the mean square error as a func-
tion of the iteration number for an average of 100 indepen-
dent trials. The NFBLMS algorithm exhibits a much greater
convergence rate compared to the LMS and FBLMS imple-
mentations. The NFBLMS algorithm converged to a steady
state after about 25 data blocks of 64 symbols, while the
LMS and FBLMS algorithms failed to converge after pro-
cessing over 50 data blocks. One must note, however, that
while the normalized FBLMS algorithm exhibits a large im-
provement in the learning curve, the convergence rate still
remains prohibitively slow for most applications.

VII. CONCLUSION

This work presented a study of an efficient, frequency do-
main implementation of the Block LMS algorithm. Using
the overlap save sectioning and an FFT method of convo-
lution, an algorithm with significantly improved complexity
was applied to a high rate multipath channel. The BER re-
sults were presented for signaling rates of 1.0 to 4.0 Mbps
QPSK. Computational complexity and convergence proper-
ties were compared for LMS, FBLMS and NFBLMS algo-
rithms. While the computational complexity and the rate of
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convergence were significantly improved, the latter remains
slow. For most practical applications, one might consider
implementing an efficient version of a fast converging algo-
rithm, such as the RLS algorithm.
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